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SUMMARY 

An issue for implementation of single step genomic evaluations is how to weight genomic and 

pedigree relationships in modelling genetic co-variance. A weighting parameter lambda ranging 

between 0 and 1 can be used in the statistical model, with higher values corresponding to greater 

weighting of genomic information. We investigated appropriate values of lambda for a range of 

carcass traits in terminal sire sheep breeds, using the accuracy and bias of genomic prediction of 

breeding values as criteria. The accuracy generally increased with lambda, although the “optimal” 

value of lambda at the maximum accuracy varied widely, covering almost the entire range of 

possible values across traits. Accuracy typically approached an asymptote towards the optimal 

lambda, so a wide range of values could be used with minimal loss of prediction accuracy. The bias 

in Estimated Breeding Values (EBVs) increased with lambda, such that EBVs over-predicted 

phenotypic performance at high values of lambda. 

 

INTRODUCTION 

Evaluations utilising genomic information in the form of blended EBVs have been available to 

Australian sheep breeders since 2011 (Swan et al. 2012). However utilising all available information 

on animals including phenotypes, genotypes and pedigree information in routine Australian sheep 

analysis were desired but had not previously been accomplished. In 2016 large scale multi-trait 

single step analyses (Legarra et al. 2014) were implemented for carcass and live weight traits in the 

three major breed evaluations, Terminal sires, Maternal breeds, and Merinos. These analyses include 

17 traits, with pedigrees in excess of 2 million animals, and SNP genotypes for up to 15 thousand 

animals.  

One of the issues for the implementation of single step in routine evaluations is how to optimally 

combine genomic and pedigree information for genotyped animals, since it is often argued that SNP 

genotypes do not explain all of the genetic variation (Goddard et al. 2011). To accommodate this, 

the variance of breeding values for genotyped animals can be modelled as (𝜆𝐺 + (1 − 𝜆)𝐴22)𝜎𝑢
2, 

where 𝐺 is the genomic relationship matrix calculated from SNP genotypes, 𝐴22 is the pedigree 

relationship matrix between genotyped animals, 𝜎𝑢
2 is the genetic variance, and 𝜆 (lambda) is a 

weighting factor between 0 and 1. This variance matrix can be used in single step analyses, and often 

a high value of lambda, between 0.95 and 0.99, is used for the pragmatic reason that the resulting 

modified genomic relationship matrix can be reliably inverted. However, the broader questions 

remain, what is an appropriate value for lambda, and does lambda vary between traits? In this paper 

we use cross-validation to investigate the accuracy of genomic predictions across a range of lambda 

values for a range of carcass traits important for the terminal sire single step evaluation. 
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MATERIALS AND METHODS 

A subset of animals from the Australian Terminal sire sheep evaluation were chosen, derived 

from the genomic reference population first established by the Sheep CRC (Van der Werf 2010). 

These animals have both genotypes and phenotypes for the traits studied. Key traits from the single 

step carcass analysis for terminal sires were investigated, including post-weaning weight (pwt), post-

weaning eye muscle depth from live animal scanning (pemd), post-weaning fat depth from live 

animal scanning (pfat), hot carcass weight (hcwt), carcass eye Muscle Depth (cemd) carcass C-site 

fat depth (ccfat), lean meat yield (lmy), intra-muscular fat (imf), and shear force at day 5 (sf5). A 

summary of the animals recorded per trait and total animals in the pedigree is shown in Table 1. 

Table 1: Data summary for terminal sire cross-validation analyses, with size of pedigree, number of 

animals recorded (and genotyped), number of Poll Dorset/White Suffolk animals with records (PD/WS 

rec), number of sires (PD/WS sires), and number of cross-validation sets (PD/WS ncv). 

 
Trait Pedigree Records PD rec PD sires PD ncv WS rec WS sires WS ncv 

pwt 28826 7714 3764 247 12 2567 169 8 

pemd 28825 7713 3764 247 12 2566 169 8 

pfat 28820 7712 3763 247 12 2567 169 8 

hcwt 31774 8976 4298 248 14 2981 170 9 

cemd 31345 8720 4172 248 13 2896 170 9 

ccfat 31191 8630 4132 248 13 2868 170 9 

lmy 22752 5254 2416 85 8 1658 56 5 

imf 29952 8088 3905 215 13 2770 154 9 

sf5 30764 8374 4017 248 13 2814 170 9 

 

For each of these traits, the procedure involved estimating SS-GBLUP (Single Step Genomic 

BLUP) REML variance components using the Wombat software package (Meyer 2007) for values 

of lambda ranging between 0 and 1 in increments of 0.1. Animals with phenotypes were then 

allocated to cross-validation groups of approximately 300, stratified within two breeds, Poll Dorset 

(PD) and White Suffolk (WS). Animals were allocated to breeds based on the breed content of their 

sires. In addition, progeny from the same sire family were always allocated to the same cross-

validation group, such that no animal in a cross-validation set would have half-sibs in the training 

data. Within these strata animals were allocated to groups at random, and the same groupings were 

used for all values of lambda. Summaries of the cross-validation schemes are shown in Table 1. 
SS-GBLUP analyses were carried out for each cross-validation set across the range of lambda 

values specified above, using the ‘s1step’ option in Wombat. Phenotypes for animals in the cross-

validation set were omitted from the training data, but their pedigree and genotype data were 

included in the analysis in order to obtain their EBVs. Prediction accuracy was then calculated as 

the correlation between these EBVs and their phenotypes (adjusted for fixed effects). To 

approximate the correlation between True Breeding Value and EBV, these correlations were then 

scaled by the square root of the heritability of the trait, which was assumed to be the heritability 

estimated in the absence of genomic information. EBV bias was also calculated for each cross-

validation set as the slope of the regression of phenotype on EBV (the expected value of the slope 

is 1, and if the estimate is less than 1 then EBVs over-predict phenotypic performance). Prediction 

accuracies and bias was then averaged across the cross-validation sets.  

 

RESULTS AND DISCUSSION 

Table 2 shows for each trait the estimated heritability (lambda = 0), the maximum cross-

validation accuracy for breeds (rmax), the value of lambda where the maximum cross-validation 
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accuracy was observed, and the range in lambda values where the accuracy varied by ±0.01. Figure 

1 displays accuracy across the range of lambda values by sire breed. 

Table 2: Terminal sire lambda cross-validation summary, with estimated heritability (h2), maximum 

cross-validation accuracy (rmax), λmax = λ at rmax, and range in lambda where accuracy varied by ±0.01 

around rmax (λlow to λhigh). 

 
Trait h2 rmax(PD) rmax(WS) λmax(PD) λmax(WS)  λlow(PD) λlow(WS) λhigh(PD) λhigh(WS) 

pwt 0.29 0.32 0.27 0.50 0.20 0.20 0.10 0.95 0.60 

pemd 0.35 0.37 0.28 0.80 0.95 0.40 0.70 0.95 0.95 

pfat 0.24 0.28 0.29 0.95 0.95 0.70 0.70 0.95 0.95 

hcwt 0.14 0.41 0.27 0.20 0.95 0.20 0.80 0.50 0.95 

cemd 0.21 0.34 0.21 0.60 0.90 0.40 0.50 0.95 0.95 

ccfat 0.28 0.21 0.22 0.60 0.60 0.40 0.40 0.95 0.95 

lmy 0.49 0.26 0.39 0.80 0.60 0.60 0.40 0.95 0.80 

imf 0.60 0.35 0.28 0.80 0.60 0.50 0.40 0.95 0.95 

sf5 0.37 0.28 0.24 0.60 0.50 0.30 0.30 0.95 0.95 

  

Lambda values at maximum accuracy were 0.5 or greater, except pwt (WS) and hcwt (PD).  As 

the maximum accuracy was approached, the response surface was generally asymptotic (see Figure 

1), such that the range encompassing rmax ± 0.01 was large. Therefore, accuracy was relatively 

insensitive over a large range of lambda values especially beyond 0.5.  

 

 
Figure 1: Accuracy versus lambda by sire breed in terminal sires (PD=Poll Dorset,  

WS = White Suffolk). Error bars show ± 1 standard deviation. 

The slope of the regression of phenotype on EBV was used to assess the bias of EBVs across the 

range of lambda values and is shown in Figure 2. Results show some variation between traits and 

sire breeds within traits, but there is a clear general trend that the bias increases with lambda. That 

is, higher values of lambda lead to EBVs which over-predict phenotypic performance. In selection 
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cohorts with a mix of genotyped and un-genotyped contemporaries, this may lead to genotyped 

animals being incorrectly favoured. It is uncertain to us why the bias increases with lambda, but it 

may be due to an increasing influence of small genomic relationships in the 𝐺 matrix which are due 

to identity by state rather than identity by descent genome sharing. 

Correlations between EBVs for different lambda values were also calculated for different classes 

of animals, including progeny tested sires, and animals with and without phenotypes. For EBVs 

calculated with lambda of 0.5 and 0.95, these correlations ranged between 0.96 and 0.99, 

demonstrating that a wide range of lambda values between 0.5 and approaching 1 can be used with 

minimal impact on the ranking of animals. 

 

 
Figure 2: EBV bias versus lambda by sire breed in terminal sires (PD = Poll Dorset,  

WS = White Suffolk). 

Given the relatively large window for insensitivity of prediction accuracy, high correlation of 

EBVs between lambda 0.5 and 0.95 and the levels of bias in EBVs when lambda is high we have 

initially used a value of 0.5 for lambda in routine industry evaluations. More research on this issue 

is warranted, including the impact of lambda in multi-trait models. 
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